CPH Channel baling press

The CPH is the latest baling press from the PAAL Group and compliments the already existing wide range of baling presses. The CPH baling press is a powerful, reliable and efficient baling press offering an economic solution for your daily baling requirements.

The CPH baling press is manufactured in the now familiar PAAL modular concept.

With the modular concept the baling press can be tailored to your individual requirements at the order stage, thus ensuring that the baling press can be used for many different applications.

Individual designed by the modular concept

Baling press for economical operation

10 Points of guidance

The press plate is guided by eight heavy duty rollers and two lateral guide rails. Behind the heavy fabricated pressure plate is a scraper that keeps the roller guide trails free from material.

Durable baling press base plate

The machine base plate is manufactured from high resistant wear steel. The pressure plate roller guide rails are easily exchanged and therefore reducing maintenance costs. The CPH baling presses with the higher pressing forces have the complete base plate covered in replaceable high resistant wear plates.

PAAL Control - well informed

Easy to use and safe technology

Operating Controls

The control unit of the CPH baling press is a combination of push buttons and digital display utilising the well established Siemens PLC control which provide reliable and durable fully automatic function for the baling press.

Information in Plain Language

The information in plain language is giving important information such as bale length, number of bales produced, operation times as well as malfunctions. As an option the CPH baling press can be ordered with the Baler Information and Control System (BICS) and with on-line Remote Service System (RSS).

-

Standard Issue 1/07 We reserve the right to change dimensions and specifications. Colours may deviate typographically.

Additional Safety

To increase the safety of operational and maintenance personnel an optional key transfer system has been developed by the PAAL GROUP. Two keys, which are required to open access doors and safety guards at the baling press, must be stored in locks at the control panel before the main power can be turned on.

Maximum storage capacity

Final result: well formed bales

Dense, square stackable bales and optimum handling

CPH bales allow maximum safe storage capacity due to the high quality bales, thus, requiring less space to store the maximum number of bales.

Individual configurable

The baling press allows for optional add on modules. The range of baling presses can be equipped with various modules such as perforator (piercing of PET bottles), ruffler (enables the opening of bulky paper) or stamper (automatic clearing of material jamming at the knife cutting edge).

Large range of applications

The CPH was designed to press cardboard, paperboards, foils, shredded materials, printers waste and other types of material. With other additional equipment and different pressing forces the CPH range is suitable for many different applications.

Consistently economical

Designed for efficiency

Quality Cutting System


The system with a very large cutting knife angled towards the centre of the baling press channel guaranteeing bales with a smooth top surface ensuring the possibility of high stackability. The special relief ground cutting edge system ensures the CPH baling press is extremely wear resistant giving low maintenance costs.

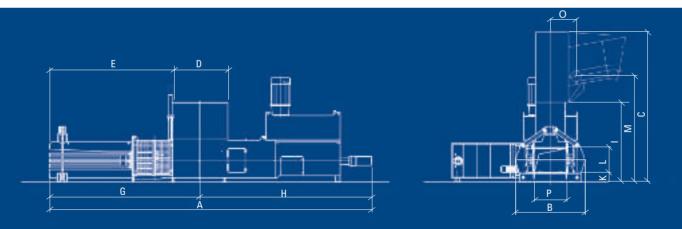
Fully automatic tying system

The fully automatic 4 or 5 fold tying system with integrated wire cutter is highly reliable at minimum tying time. Short wire "pigtails" and low maintenance costs ensure minimal operating costs.

A special hydrologic block

The PAAL hydrologic block controls all hydraulic functions. Large diameter hydraulic hoses and tubes ensure low heat generation and energy loss. The compact efficient hydraulic power pack with low noise drives and automatic pumpdemand control operate at low

energy and low maintenance costs.



Technical data and measurements

ressforce at approx. 300 bar	kN						
pec. pressforce	N/cm ²						
innel cross section	cm						
eed opening	cm						
eed volume	max.m ³						
umber of wires	pieces						
riving power	kW						
ress output ideal	_{max} .m ³ /h						
ress output under load	_{max} .m ³ /h						
ress capacity (weight) n relation to bulk weight)							
35 kg/m^3 e.g. flattened OCC	ca. t/h						
60 kg/m ³ e.g. mixed paper	ca. t/h						

		CPH 51	PH 5140 CPH 6540			C	PH 80	040	CF	PH 10	040	C	PH 12	050	CPH 15050			
٨N		500 650						800			1000			1200		1500		
N/cm ²		67 86					106				133			99		124		
cm		75 x 100 75 x 100					75 x 100			7	5 x 10	0	1	10 x 1	10	110 x 110		
cm		140 x 92 160					< 92 160 x 92					2	2	00 x 1	02	200 x 102		
_{max} .m ³		1,35		1,5			1,5				1,6			3,1		3,1		
oieces		4		4			4				4			5		5		
٨W	22	30	45	22	30	45	30	45	75	45	75	2x45	75	2x45	2x75	2x45	2x75	
_{max} .m ³ /ł	n 290	360	710	260	325	655	290	590	750	530	640	900	885	1265	1600	1000	1300	
_{nax} .m ³ /ł	n 115	5 145	240	110	135	225	125	215	300	180	255	325	340	440	605	370	510	
ca. t/h	4	5,1	8,4	3,9	4,7	7,8	4,4	7,5	10,5	6,3	8,9	11,4	11,9	15,4	21,2	13	17,9	
:a. t∕h	6,6	8,3	13,3	6,3	7,7	12,7	7,2	12,1	16,8	10,2	14,5	18,5	18,3	23,5	32	19,5	27,6	
a. t		12			14			17			20			36		39		
				l			i I			1								
Α	В	C	D		E	G	Н		I	К	L	ľ	N	Ν	0	Р	R	
9215	1700	4695	1400) 37	15	4415	4800) 24	95	295	750	33	355 920		810	1000	3090	
9500	2005	4820	1600) 37	15	4515	498	5 24	95	295	750	750 33		920	810	1000	3090	
9935	2160	4825	1600) 39	915	4715	5220) 25	600	300	750	750 33		360 920		1000	3090	
11450	2340	5040	1750) 49	915	5790	5660	60 2540		340	750 3		400 920		810	1000	3090	
13490	2770	5565	2000) 61	15	7115	637	5 30	65	535	1100 3		925 1020		860	1100	3320	
13490	2770	5565	2000) 61	15	7115	637	5 30)65	535	1100	0 39	925	1020	860	1100	3320	

		(CPH 5140			CPH 6540			CPH 8040			PH 100)40	CPH 12050			CPH 15050	
Pressforce at approx. 300 bar	kN		500			650			800			1000			1200		1500	
spec. pressforce	N/cm ²		67			86			106			133			99		124	
tunnel cross section	cm		75 x 100			75 x 100			75 x 100			75 x 100			10 x 1	10	110 x 110	
feed opening	cm		140 x 92			160 x 92			160 x 92			175 x 92			00 x 1	02	200 x 10	
feed volume	_{max} .m ³		1,35			1,5			1,5			1,6			3,1		3,1	
number of wires	pieces		4			4			4			4			5		5	
driving power	kW	22	30	45	22	30	45	30	45	75	45	75	2x45	75	2x45	2x75	2x45	2x75
press output ideal	max.m ³ /h	290	360	710	260	325	655	290	590	750	530	640	900	885	1265	1600	1000	130
press output under load	max.m ³ /h	115	145	240	110	135	225	125	215	300	180	255	325	340	440	605	370	510
press capacity (weight) in relation to bulk weight)																		
- 35 kg/m^3 e.g. flattened OCC	ca. t/h	4	5,1	8,4	3,9	4,7	7,8	4,4	7,5	10,5	6,3	8,9	11,4	11,9	15,4	21,2	13	17,9
- 60 kg/m ³ e.g. mixed paper	ca. t/h	6,6	8,3	13,3	6,3	7,7	12,7	7,2	12,1	16,8	10,2	14,5	18,5	18,3	23,5	32	19,5	27,6
baler weight (according to equipment)	ca. t		12		14		17		20			36			39			
Dimension in mm	А	В	C	D	I	E	G	Н		I	к	L	r	м	N	0	Р	R
CPH 5140	9215	1700	4695	1400	37	15	4415	4800) 24	195	295	750	33	355	920	810	1000	309
CPH 6540	9500	2005	4820	1600	37	15	4515	498	5 24	195	295	750	33	355	920	810	1000	309
CPH 8040	9935	2160	4825	1600	39	15	4715	5220) 2!	500	300	750	33	360	920	810	1000	309
CPH 10040	11450	2340	5040	1750	49	15	5790	5660) 2!	540	340	750	34	100	920	810	1000	309
CPH 12050	13490	2770	5565	2000	61	15	7115	6375	5 30)65	535	1100) 39	925	1020	860	1100	332
CPH 15050	13490	2770	5565	2000	61	15	7115	6375	5 30)65	535	1100) 39	925	1020	860	1100	332

FAES®

PAAL[®] PAAL GmbH Raiffeisenstraße 15-17 49124 Georgsmarienhütte Germany

Tel.: +49 (0) 5401 488 0 Fax: +49 (0) 5401 488 13 info@paalgroup.com

Amadeo Farell S.A.U. Poligono Industrial Can Carné Calle Montsià s/n, P.O. Box 125 08211 Castellar del Vallés . Tel.: +34 937 143 210 Fax: +34 937 143 169 info@faesnet.net

www.paalgroup.com

 $-\oplus$

DICOM Dicom Ltd. Lydford Road Meadow Lane Industrial Estate Alfreton, Derbyshire DE55 7RQ Croot Pritoire Great Britain Tel.: +44 (0) 177 352 0565 Fax: +44 (0) 177 352 0881 sales@dicom.ltd.uk

Tel.: +33 (0) 3 80 33 49 26 Fax: +33 (0) 3 80 33 42 43 com@comdec-paal.com

PAALGROUP